Simulation Formats and Fidelity

Dr Radha Gadhok
UCLP Simulation Fellow in Gastroenterology, Homerton Hospital
July 2016
Objectives

Two parts

Simulator types:
• Recognise the breadth of simulator use in training
• Define the differences, benefits or disadvantages broadly of each

Fidelity:
• Recognise different aspects of fidelity
• Consider what the most important aspects of fidelity are
Examples of the simplest and most complex formats of simulation?
Classification of Simulators

Small group discussion – “around the table”
Part task trainers
Computer based systems
Virtual reality and haptic systems
Simulated patients
Simulated environments
Integrated simulators
 Instructor driven simulators
 Model driven simulators
Part-task trainers
Computer based simulation
Simulated patients
Simulated environments
Integrated simulators
Classification of Simulators

Small group discussion – “around the table”
Part task trainers
Computer based systems
Virtual reality and haptic systems
Simulated patients
Simulated environments
Integrated simulators
 Instructor driven simulators
 Model driven simulators
Which method is best?

Brainstorm five factors (plus) that distinguish these simulator methods and help highlight the best method....
Factors that distinguish simulator methods

• Intended learning objectives
 e.g. competence training and testing, teamworking, testing clinical systems
• Cost of equipment (consumables and non-consuming)
• Faculty availability
• Instructor expertise
• Automated feedback
• Fidelity
Matching learning outcomes to method:

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching junior and senior GP trainees how to recognise and manage anaphylaxis (in an education centre)</td>
<td>Simulated environment</td>
</tr>
<tr>
<td>Teaching ward nurses about the complications of NGT insertion and how to respond</td>
<td>Part task trainers</td>
</tr>
<tr>
<td>Training nurses and doctors in protocols for requesting and giving blood</td>
<td>Simulated patients</td>
</tr>
<tr>
<td>Communicating with an angry patient relative in a waiting room</td>
<td>Integrated simulator</td>
</tr>
<tr>
<td>Practising interaction between surgeon and theatre nurses</td>
<td>Small group discussion “around the table”</td>
</tr>
<tr>
<td></td>
<td>Computer Based Systems</td>
</tr>
</tbody>
</table>
Take home message 1:

• No ‘best method’ for simulation
• Need to consider learning objectives carefully
• The ‘most complex’ format for simulation isn’t always the best format
Fidelity: a definition

The extent to which the appearance or environment and behaviour of the simulator/simulation match the appearance and behaviour of the simulated system
Aspects of fidelity

• Physical fidelity: degree of visual and spatial accuracy
• Task fidelity: degree to which specific tasks are realistic
• Sociological fidelity: degree to which interpersonal interactions are realistic

• Psychological fidelity: perceived realism; “suspending disbelief”
 • Key component in transferability
Achieving high fidelity across the board?

Which type of fidelity is the most important?....
And so do we define LFS and HFS...:
 In terms of the tools/mannequin?
 In terms of the whole scenario?

Is high fidelity always better?
 - In part task?
 - In full-immersion?
Take home message 2:

- No ‘best method’ for simulation
- The ‘highest fidelity’ format for simulation isn’t always the best format
- Need to prioritise learning objectives carefully - difficult to satisfy all aspects of fidelity

Questions, discussion, comment....